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Abstract

We present a highly parallel graph mapping technique that enables

one to efficiently solve unstructured grid problems on massively parallel

computers. Many implicit and explicit methods for solving discretized
partial differential equations require each point in the discretization

to exchange data with its neighboring points every time step or iter-

ation. The time spent communicating can limit the high performance

promised by massively parallel computing. To eliminate this bottleneck

we map the graph of the irregular problem to the graph representing
the interconnection topology of the computer such that the sum of

the distances that the messages travel is minimized. We show that,

in comparison to a naive assignment of processors, our heuristic map-

ping algorithm significantly reduces the communication time on the
Connection Machine CM-2.
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1 Introduction

In fluid dynamics, structural mechanics, electromagnetics, combustion, and

many other applications, the problems to be solved are nearly always initial-

boundary value problems for coupled systems of partial differential equations

(PDEs), quite often nonlinear. Many projects have demonstrated that mas-

sively parallel architectures are very effective at solving PDEs when grids

are fixed and topologically simple, Cartesian for example [1, 16, 17]. Here we

investigate the use of these architectures for more difficult problems, where

the grid is arbitrary, but static. One very important problem is to map the

unstructured grid to the architecture so that grid neighbors are not distant.

Such a mapping allows for fast communication of data stored at grid points

to neighboring grid points. In general, graph mapping problems of this type

are difficult (hypercube embedding is NP-complete). We can, however, use
heuristics.

We have developed a highly parallel heuristic graph mapping algorithm

and implemented it on the Connection Machine CM-2. For very large, very

irregular problems arising in 2D fluid flow problems it has achieved excellent

results. The method has outperformed methods based on simulated anneal-

ing. By this we mean that we need far less time to do the embedding and the

results obtained are as good. Compared with naive or random embeddings,

we are able to reduce communication time threefold, even for realistic, large,

highly irregular and stretched meshes.

The rest of this paper is organized as follows. In Section 2 we define the

mapping problem and discuss related and previous work. The architecture
of the Connection Machine CM-2 is described in Section 3. In Section 4 we

discuss the parallel mapping algorithm. Section 5 discusses the experiments

and results of using the heuristic.

2 The Mapping Problem

The mapping problem arises because we want to minimize the communica-

tion time for an application whose tasks have been distributed over many

processors of a massively parallel local memory computer. These distributed

tasks must repeatedly exchange locally stored or computed data with their

neighbors. The tasks and their associated communications form a graph

G -- (Vc, Ea) where there is a vertex, Va for each task. Additionally,
for each task i that communicates with another task j there is an edge
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(i, j) E EG. For simplicity we assume that the computation is composed of
unit tasks and and unit communications. This is a reasonable assumption

for a single instruction multiple data (SIMD) computer since all processors

do the same thing at the same time.

The processors and their interconnection network can be represented as

a graph also. Let the graph H = (VH, EH) represent the parallel computer

where there is a vertex, VH for each processor. Additionally, for each pro-

cessor p that is directly connected with another processor q there is an edge

(p,q) EH.
Let ¢ : EG _ EH and u E VG. Define

)_(u, ¢) - _ (distance(¢(u),¢(v)))

where distance is the length of the shortest path in H from ¢(u) to ¢(v).

For a hypercube, this distance is the Hamming distance. _(u, ¢) is the con-
tribution one vertex makes to the total communication load on the system

- the sum of the distances that all messages originating at a single vertex

must travel. Also, we define the total communication load, A, to be

uEVa

We seek to reduce A by a good choice of the map ¢. When the choices of

G, H and ¢ are clear we will simply use A.

One might wonder whether it would be better to minimize the maximum

message distance rather than the sum of message distances. It is true that

the maximum message distance is a lower bound on the communication time.

Experiments on the CM with our problems have shown that the latter is
better correlated to the actual communication time.

When grids are created the grid points are usually given some numbering
such as the order that they are generated - the first grid point generated

would be labeled number 1. We call the mapping of grid point 1 to processor

1, grid point 2 to processor 2, and so forth, a naive mapping.

2.1 Related Work

Hypercube networks [26] have attracted much attention because of their

powerful topological properties [21] and their development into products by

several manufacturers. Also, it has long been known that multi-dimensional



gridsof suitable dimension can be embedded as subgraphs of the hypercube

by means of gray codes [12].

Many people have considered mapping applications to hypercubes and

other parallel processors [2, 3, 5, 6, 7, 9, 10, 11, 14, 18, 19, 20, 22, 23, 25,

24, 28]. But, most of these efforts were sequential algorithms focused on

mapping graphs with hundreds of vertices to machines with tens of pro-

cessors, not thousands of processors. Here we consider parallel techniques

for mapping graphs with tens of thousands of vertices to a computer with

thousands of processors.

One might also consider first partitioning the graph and then mapping

partitions to processors. But, performing the two operations in isolation can

lead to poor mappings and much less than optimal communication time [9].

Dahl [8] has shown that simulated annealing to minimize A can be effec-

tive at reducing the communication time for the class of problem considered

here. Simulated annealing is attractive because it can achieve good results if

run long enough and typically avoids getting stuck in local minima. On the

other hand, it cannot take advantage of the fact that one often knows the

spatial locations of the grid points. This information can be used to form

an initial guess that reduces the time to obtain a good mapping. Also, it re-

quires the user to specify parameters of the algorithm (beginning and ending

"temperatures"). Optimal choice of these inputs differ for every graph and

if chosen incorrectly can greatly increase the running time of the heuristic.

3 Connection Machine Characteristics

The Connection Machine CM-2 isa massivelyparallelSIMD computer with

64K processors.It'sunderlyingtopologyisan 11-dimensionalhypercube of

sprintnodes.A sprintnode iscomposed of32 processors(twoprocessorchips

containing16 processorseach),a Weitek floatingpoint chip and memory.

Neighboring sprintnodes are connected by two bi-dir_tional1-bitpaths.

Communication between the 32 processorson a sprintnode isvery inexpen-

siverelativeto communication with processorson other sprintnodes. In

orderto analyzecommunication time,one ignoresthe factthatsprintnodes

contain32 processorsand focuseson reducingthe costofinter-sprint-node

communication.

Communication ismuch slowerthan computation on the CM-2. Nearest

neighbor communication (oftenreferredto as NEWS communication) rates

vary between 1.6x 109 and 7.3x 10z floatingpoint words communicated
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per second, depending on the virtual processor ratio. The realizable peak

computation rate is 5.7 × 10 9 flops [15]. Using the router for collision-free

distance 1 communication is approximately a factor of 8 slower than the

NEWS network [4].

When algorithms and architectures match then the performance is very

good. Many people have shown that well matched computations on the

Connection Machine can be implemented using regular (nearest neighbor)

communications and achievable rates are close to the realizable peak rate

[4, 10, 15, 17, 27]. On the other hand, if an algorithm requires general

communication between processors (using the router) then there can be

3 orders of magnitude (or greater) difference between realized and peak

performance [4].

Until recently, general communication on the Connection Machine re-

quired the router and was excruciatingly slow. This is particularly true

for solving unstructured grid problems where the communication pattern

does not match the interconnection topology of the parallel computer. A
feature of the communication we focus on here is that the communication

pattern, although irregular, remains static throughout the duration of the

computation. Dahl [8] has developed communication software called the

"Communication Compiler" to take advantage of the fixed pattern. It is a

software facility for scheduling completely general communications on the

Connection Machine. The user specifies a list of source locations and desti-

nations for messages and enables one to fully utilize the large communication
bandwidth of the machine. The communications are scheduled once at the

beginning of the program and then the message routing pattern is used re-

peatedly throughout the duration of the program. The schedule is a set

of one or more message cycles. A message cycle is a single communication

step when messages can be moved across all hi-directional paths connect-

ing sprint nodes. A single sprint node on an 8K processor CM-2 has 16
bi-directional connections. In one message cycle each sprint node can send

and receive 16 messages.

Communication using the compiler is a factor of 5 - 10 faster than using

the router for general communication. An intelligent mapping of tasks to

processors as proposed here results in further improvements.
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Figure 1: 4-dimensional hypercube split into two 3-cubes.

4 A Parallel Mapping Algorithm

In this section we discuss the heuristic used to reduce A and thus the com-

munication time. Our heuristic consists of an iterative improvement of the

initial mapping by performing parallel pairwise exchanges of the processors
to which the vertices are mapped. The heuristic ioops over each dimension of

the hypercube. At each iteration of the loop, the chosen dimension partitions

the hypereube into two equal size subcubes. Figure 1 shows a 4-dimensional

hypercube partitioned into two 3-cubes. The dashed line represents the cho-

sen dimension and highlights pairs of sprint nodes. The algorithm picks two

vertices from each sprint node pair, one from each, and swaps their loca-

tion. Recall that on the CM-2 there are 32 processors on a sprint node. If

we assume that we map one vertex to each processor then each sprint node

holds 32 vertices. We choose the vertex from each sprint node that causes

the largest reduction in A when moved. Let _ be the current mapping and

let tf be the new mapping if some vertex v was moved across the dimension

highlighted by the dashed line. For each vertex v compute the reduction in
A

reduction. = ._(v, _b) - )_(v, q/).

Each sprint node chooses the vertex with the largest reduction. Let vertices

m and n be two such vertices from neighboring sprint nodes. We perform
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the exchangeif and only if

0 < reduction,_ + reduction,.

These computations and vertex exchanges are performed in parallel by every

node in the hypercube of sprint nodes. For a given dimension the maximum

possible reduction in A is made every iteration. We call one complete loop

over all dimensions of the hypercube of sprint nodes a sweep.

Not every grid comes with the same number of vertices as the number (or

some multiple of the number) of processors in the computer system. We fill
in the difference with wild card vertices. A wild card vertex is a vertex with

no neighbors. Wild card vertices provide a uniform way to handle special

cases on a SIMD computer. Since there are no neighbors, the function

A(u, _b) always has the value 0 for these vertices.

5 Results

We tested our heuristic on 2 grids arising in computational fluid dynamics.

The graph show in Figure 2 is part of a triangular discretization around a 4

component airfoil. It has 15606 vertices and 45878 edges. The grid shown

in Figure 3 is part of an unstructured mesh around a 3 component airfoil.

The grid has 4720 vertices and 13722 edges. These are particularly hard

test cases because they have multiple areas of refinement, holes for the wing

body and flaps, and the ratio of the longest edge length to the shortest is

greater than 1000.

A data parallel mesh-vertex upwind finite-volume scheme for solving the

Euler equations on the grids show in Figures 2 and 3 has been developed [13].

The problem is mapped to an 8K processor CM-2 (8-dimensional hypercube

of sprint nodes). A common operation in the application is for the processor
associated with each vertex to communicate with the processors assigned to

a subset of its neighboring vertices. There is one communication for each

edge. We call this operation a get.
In Tables 1 and 2 we compare 4 different forms of this get operation

for the grids shown in Figures 2 and 3. We compare 1) random initial

mapping and the router, 2) hueristic mapping and the router, 3) random

initial mapping and the communication compiler, and 4) hueristic mapping
and the communication compiler. Each test is executed 1000 times. The

first column shows the value of A. The second column shows the number

of sweeps of the heuristic applied. The third column lists the number of



Figure 2: Closeup of mesh about 4 component airfoil with extended flaps.

message time in seconds

A sweeps cycles for 32-bit message

random + router 183521 0 - 30.14

heuristic + router 48851 30 - 30.17

random + compiler 183521 0 53 4.12

heuristic + compiler 48851 30 17 1.49

Table 1: Comparison of router and Communication Compiler for random

mapping and heuristic mapping on 4 component grid.
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Figure 3: Closeup of unstructured mesh about 3 component airfoil with flaps
down.

A

random + router 55222

heuristic + router 17488

random + compiler 55222

heuristic + compiler 17488

message time in seconds

sweeps cycles for 32-bit message
0 - 13.68

9 - 12.77

0 30 1.52

9 9 0.78

Table 2: Comparison of router and Communication Compiler for random

mapping and heuristic mapping on 3 component grid.

9



message cycles required for the get operation. Message cycles only apply

to the communication compiler and not to the router. The fourth column

shows the delivery times in seconds for 32-bit data. Note that the compiler

alone reduces the time by a factor of 9 in Table 1 and a factor of 7 in Table 2

compared to the router. This is primarily due to the fact that the compiler

knows a prior/the totalcommunication load and schedulesmessages to

use allwires in parallel.The routerdoes not have the same information

availableatany one timeand isthereforelessefficient.Replacingthe random

mapping and the compilerwith the heuristicmapping and compilerproduces

almost a threefoldreductionincommunication time. Even though we reduce

the number of message cyclesby a factorof 3 for both testgraphs the
communication time is reduced 2 to 2.5-fold.The time reductionis not

threefoldbecause the system overhead becomes significantas the number of

message cyclesisreduced.For problems with higherlevelsofcommunication

than thesetwo relativelysmall and sparsetestgraphs we expect to see a

closecorrelationbetween reductioninthe number ofmessage cyclesand the

reductionin communication time.

30 sweeps of the heuristicon the 4 component mesh took 35 seconds

and 9 sweeps on the 3 component mesh took 7.2secondson the CM-2. The

timingswere done on a CM-2 hosted by a Sun-4. The program was written

in *lisp.

Now we furtherillustratethe effectivenessof the heuristicfor reducing

A and thusthe communication time.In Figures4 -6 we show the reduction

in A and the reductionin the number of routingcyclesas a functionof the

number ofsweeps ofthe heuristic.The graphsinFigures4 and 5 correspond

to the testcasein Figure2. The graphs inFigure 6 referto the testgridin

Figure 3. We plottwo graphs foreach testcase.The top graph shows the

reductionof A as a functionof the number of sweeps. The bottom graph

shows the reductionin the number of message cyclesas a functionof the

sweeps.

For the data in Figure 4 and 6, we begin with a naive mapping (vertex

1 goes to processor1, ...,vertexn goes to processorn) and then run the

heuristic.(Note that A isalsoreduced threefold.This confirms that our

objectivefunctionisa predictorforthe communication time.)

In Figure 5 we startedwith 3 random initialassignmentsof verticesto

processorsand then used the heuristicon each initialguess.It isinterest-

ing to see that random initialguessesproduce a very largeA, but initially

requirefewer message cyclestocomplete the communication than the naive

initialguess. This is because the communication load isdistributedover
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the machine. To some extent this is an artifact of the current state of the

communication compiler. It does not choose alternative wires in its schedul-

ing. For example, if 10 messages all have to go distance 1 across the same

wires the compiler serializes the communication rather than seeking unused

alternative paths.

6 Summary

We have introduced a highly parallel heuristic mapping algorithm for assign-

ing processes to processors on a massively parallel computer. The proposed

heuristic has been applied to unstructured grids typical of those used in

solving discretized PDE's. We have shown that we can reduce the commu-

nication time by a factor of three by using our heuristic mapping together

with the communication compiler compared to using the communication

compiler with a naive or random mapping.
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